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Abstract

Background: Current usability studies of bioinformatics tools suggest that tools for exploratory
analysis support some tasks related to finding relationships of interest but not the deep causal
insights necessary for formulating plausible and credible hypotheses. To better understand design
requirements for gaining these causal insights in systems biology analyses a longitudinal field study
of |5 biomedical researchers was conducted. Researchers interacted with the same protein-
protein interaction tools to discover possible disease mechanisms for further experimentation.

Results: Findings reveal patterns in scientists' exploratory and explanatory analysis and reveal that
tools positively supported a number of well-structured query and analysis tasks. But for several of
scientists' more complex, higher order ways of knowing and reasoning the tools did not offer
adequate support. Results show that for a better fit with scientists' cognition for exploratory
analysis systems biology tools need to better match scientists' processes for validating, for making
a transition from classification to model-based reasoning, and for engaging in causal mental
modelling.

Conclusion: As the next great frontier in bioinformatics usability, tool designs for exploratory
systems biology analysis need to move beyond the successes already achieved in supporting
formulaic query and analysis tasks and now reduce current mismatches with several of scientists'
higher order analytical practices. The implications of results for tool designs are discussed.

Background

Technological advances have made exploratory analysis in
systems biology accessible to large numbers of "everyday"
biomedical researchers - i.e. researchers who conduct
analysis without the help of customized tools or special-
ized collaborations with bioinformatics experts. Yet, as
usability studies show, initial query and analysis tasks that
bioinformatics tools now make possible for scientists are
not coupled with the support scientists need for generat-
ing deep insights for hypothesizing. Deep insights as used
here refer to new knowledge scientists derive from inter-
pretations and inferences about sets of biological relation-

ships, changes, and effects that explain putative disease
mechanisms [1]. Cohen and Hersh suggest that this prob-
lem of insufficient support may be traced to bioinformat-
ics tools inadequately fitting researchers' actual
exploratory practices [2]. To design for a better fit, Cohen
and Hersh argue, bioinformatics specialists need to con-
duct more naturalistic investigations of biomedical
researchers at work on real world analyses. To fill this
need, I conducted field studies of 15 biomedical research-
ers as they conducted their actual systems biology analysis
and aimed to formulate some hypothesis about mecha-
nisms of a complex disease. All the scientists interacted
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with the same web-based protein-protein interaction
application, an application that supports query and anal-
ysis and that includes a visualization workspace.

The goals of the field study were to examine whether sup-
port for generating deep insights was adequate and, if not,
to analyze whether inadequacies were due to a mismatch
between tools and scientists' actual analytical processes
and strategies. The field study sought to uncover what
these higher level cognitive processes are and how they
need to be better supported. Findings reveal that better
support for deep insights and hypothesizing is needed,
and findings raise the open design question of whether
support for all aspects of scientists' flow of analysis can or
should be addressed in one tool or many. Regardless of
design decisions about this issue of scope, the field study
traces the problem of inadequate support to three mis-
matches between tools and scientists' higher order cogni-
tive processes. Specifically, mismatches occur for the core
discovery-driven analysis processes of: (1) validating
evolving analyses, based on domain-driven standards of
excellence; (2) making a transition from classifying rela-
tionships to causal modelling to explain biological events
and outcomes; and (3) creating viable and credible causal
mental models that can lead to defensible hypothetical
biological stories. Field study results suggest that for the
tool versions tested — and for the many other tools like
them available to scientists - systems biology applications
are at a critical juncture. Tools have advanced to the point
of being able to support users fairly successfully in finding
and reading off data (e.g. to classify and find multidimen-
sional relationships of interest) but not in being able to
interactively explore these complex relationships in con-
text to infer causal explanations and build convincing bio-
logical stories amid uncertainty.

In bioinformatics, requirements for meeting these objec-
tives are still underspecified. Consequently, it is difficult
to determine if one or many tools are needed to meet sci-
entists' ways of knowing and reasoning for explanatory
analysis under uncertainty. Findings from this study help
to guide such requirements, providing an empirical basis
for deciding optimal scopes and conceptual designs.

The rest of this article reviews relevant literature, describes
field study results, and critically discusses mismatches
between tools and cognition. Mismatches are tied to
design issues, many of which the current research litera-
ture acknowledges but underspecifies. The conclusions
propose objectives to guide bioinformatics specialists in
developing conceptual design requirements. Methods fol-
low. Additional file 1 proposes in more detail design strat-
egies to guide the specifications of requirements for
conceptual designs aimed at a better fitness to purpose
and greater usefulness.

http://www.j-biomed-discovery.com/content/4/1/2

Review of relevant research

Several bioinformatics usability studies overtly or tacitly
establish that scientists are not able to gain deep insights
from bioinformatics tools intended to support explora-
tory analysis. In a 2005 study [3], 30 scientists explored
microarray data with five different tools but could only
attain surface level insights. They gained surface insights
by directly reading off data from interface displays, attain-
ing, for example, new knowledge about structural and
functional traits of genes, clusters with similar properties,
and expression values that were statistically significant.
Deeper inferences eluded scientists, for example, insights
into roles played by functional and structural relation-
ships in chains of interactions and effects on disease proc-
esses. Other bioinformatics studies - involving both
naturalistic and simulated tasks and interviews - reveal
the same problem [4-10].

Unfortunately, little if any research in bioinformatics
directly analyzes scientists' processes for and impasses in
gaining explanatory insights amid uncertainty from a cog-
nitive perspective. But research exists in other disciplines
that focuses explicitly on scientists' cognition, and it can
lay a foundation in bioinformatics for understanding bio-
medical researchers' higher order ways of knowing and
reasoning in systems biology. Many researchers converge
on the same cognitive characterizations. Neressian, for
example, finds that regardless of specialty when scientists
conduct discovery-driven investigations they progres-
sively and, at times, recursively engage in three modes of
reasoning: Classification, model-based reasoning, and
narrative reasoning [11]. Other studies find the same
combination and integration of reasoning processes [12-
15]. As cognitive researchers argue, none of these modes
of reasoning alone is sufficient for hypothesizing; all must
interact coherently and dialectically [16]. Furthermore, in
each mode scientists continuously alternate between crea-
tive hunches ("loose analysis") and validation ("strict
analysis) [17].

In their studies, bioinformatics researchers indirectly help
to expand on one of these reasoning modes - classifica-
tion. Though conducted for purposes other than design, a
handful of bioinformatics studies strive to model tasks
and protocols for query and analysis. For example, bioin-
formatics researchers find that bioinformatics specialists
functionally analyze gene sequences by differentiating
relationships based on such categories as conservation,
sequence similarities, diseases, and biological structures
and functions [5,7,9]. Correspondingly, these specialists'
flows of classification typically involve collecting objects
into categories, filtering and restricting them, and subject-
ing them to conditional analysis [7]. Some of the usability
studies discussed previously show that bioinformatics
tools typically support this reasoning to a certain degree,
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hence the achievement of surface insights. Unfortunately,
classification alone does not lead to hypotheses that are
novel, credible and plausible. Causal mental modelling
and narrative reasoning must occur and be supported by
tools, and they are more difficult to formalize.

Model-based reasoning, as it functions in hypothesizing
about systems biology problems, involves drawing infer-
ences to explain how and why biological events, changes,
and outcomes under various conditions and mediating
constraints may influence mechanisms of a particular dis-
ease. When scientists engage in model-based reasoning
they go beyond read-offs - the focus of classification -
and infer contexts, conditions, and their functional and
structural effects on biological interactions and outcomes
[18-20]. Cognitively, inferences are the most difficult rela-
tionships to draw and validate [20].

Using multiple reasoning strategies, scientists draw causal
inferences by turning structured - that is, quantitative or
categorical - knowledge representations into qualitative
mental models of changes and effects [21]. Bioinformatics
systems cannot build in rules for this inferential thinking
and causal modelling because these cognitive processes
depend on scientists' domain expertise, heuristic strate-
gies for analyzing local biological contexts, and opportun-
istic and emergent analytical pursuits [22].

For this cognitively demanding and complex reasoning,
the match scientists need from tools is cues, not read-offs
of data elements per se [14,23,24]. Unfortunately, cues are
an under-specified human-computer interaction require-
ment in general and in bioinformatics specifically. In
addition, for mental modelling scientists need to selec-
tively discern biologically meaningful concepts and to
manipulate data relationships, especially through spatial
transformations [14,18]. Spatially, scientists seek to exter-
nalize such mental processes as rearranging relationships
to explain causes and effects to view them from different
perspectives and contexts. This need may demand aggre-
gating data in different ways and strategically laying out
and re-laying out data to discover plausible associations
and effects. For example, in systems biology spatial trans-
formations can include creating overlays of a "disease-
ome" mapped to molecular interaction networks or side-
by-side views for comparison [25].

Finally, scientists engage in narrative reasoning, which
evolves from and refers back to mental modelling and
classification. As Latour emphasizes, scientists continu-
ously build stories to understand causal relationships. He
writes, "Most of a scientist's ingenuity goes into designing
devious plots and careful staging to make the actant par-
ticipate in new and unexpected situations that will
actively define it" [15]. This effort is not trivial, and, in
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fact, is elusive in the support most current bioinformatics
software offers. Only a handful of applications have ven-
tured into trying to provide such support, and the tool ver-
sions in my field study did not strive to do so [26,27].

For systems biology, these complementary and integrated
modes of reasoning are directed toward uncovering causes
and effects in chains, networks, and loops of interacting
biological entities and processes. For such complexity,
analysis workspaces that include interactive visualizations
are central to tool designs. Visualizations are "the equiva-
lent of power tools for analytical reasoning.” Many well-
documented visual design guidelines exist but they per-
tain to low level visual analysis tasks and operations, not
to the higher order cognition that is the focus of this field
study [e.g. [28-30]]. Some visual analytics researchers in
bioinformatics and other domains highlight this gap and
argue that for complex analysis users need better visuali-
zation support [31,32]. For example, users need support
for representing and analyzing weighted relationships and
outcomes, clarifying possible sources of causation, and
discovering co-occurring relationships and constraints
[31].

Various findings related to interface and interactive visual-
ization designs for complex analysis have important
implications for systems biology but only insofar as the
designs can be adapted to scientists' actual practices and
purposes. Results from my field study on scientists' ways
of knowing and reasoning for real world purposes in sys-
tems biology provide guidance for adapting design strate-
gies for complex analysis to the demands of systems
biology.

The tools

Fifteen scientists in the field study all interacted with the
same web-based tool, which gave them access to the Mich-
igan Molecular Integrating (MiMI) protein interaction
database http://www.mimi.ncibi.org. MiMI is an innova-
tive database that uses advanced computational merging,
integration and provenance tracking to bring together the
content of (at the time of the testing) ten well-established
protein interaction databases. Additionally, MiMI inte-
grates and stores conceptual information about the mole-
cules, such as Gene Ontology (GO) annotations and
articles referencing specific molecules or protein interac-
tions. MiMI is also the name of the web-based, front-end
query and analysis tool for the database. Both the data-
base and the tool are developed and maintained by the
National Center for Integrative Biomedical Informatics
(NCIBI), one of seven NIH-funded centers dedicated to
generating and disseminating advances in translational
bioinformatics. Informal comparative assessments
between MiMI and other comparable innovative open
source tools are regularly conducted by NCIBI developers
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and consistently show that MiMI is representative of and
in many ways better than tools available today to users.
Thus results from the field cases likely reflect the state of
bioinformatics tools today in supporting explanatory and
exploratory analysis. Few tools today explicitly set their
scopes specifically on supporting only one, all, or some of
the multiple modes of reasoning on which formulating
hypotheses in systems biology depends. Largely, little is
known about such multi-mode reasoning for explanatory
analysis in systems biology. Thus the trend in tools seems
to be to provide information, see what users do with it,
what more they want to do, and modify the tools accord-

ingly.

MiMI actually offers several exploratory capabilities
beyond "typical" systems. For example, using MiMI's web
interfaces to the database, scientists are able to gain access
to large volumes of heterogeneous data in one place and
to retrieve, as well, details derived from the mining of
PubMed literature through semantic natural language
processing (NLP) distinct to the MiMI suite of tools. MiMI
also lets users link out to other available knowledge
sources on the web.

Another strength of MiMI is that it offers a plug-in to Cyto-
scape, which carries MiMI data over to Cytoscape and dis-
plays the data in dynamically linked tabular displays and
networks of protein-protein interactions. Cytoscape is a
highly cited, award-winning interactive visualization sys-
tem for biomedical research http://cytoscape.org. The
MiMI plug-in for Cytoscape (referred to here as MiMI-
Cytoscape) provides the same link-outs found in MiMI
along with links to extracts from articles mined through
NLP, and a link to a MiMI-integrated subgraph matching
tool called SAGA. SAGA lets scientists find overlaps
between a MiMI-Cytoscape sub-network of interest and
KEGG pathways.

The MiMI and MiMI-Cytoscape tools used in the field
research were beta versions. Based on feedback from the
ongoing user observations and interviews, NCIBI devel-
opers steadily improved upon and sent updated versions
back to the field. Using MiMI, the scientists queried the
database and interactively analyzed results for insights
into mechanisms of a disease or other aberrant cellular
process. The scientists all accessed extensive data from the
MiMI database on biological concepts such as Gene
Ontology (GO) annotations or types of experiments used
to find the protein interactions. With the plug-in, the sci-
entists explored high dimensional molecular interactions
and moved recursively between Cytoscape and MiMI dis-

plays.

http://www.j-biomed-discovery.com/content/4/1/2

Results

Overview of common research and analysis practices
Fifteen scientists researched distinct problems related to
different diseases and putative mechanisms. Regardless of
these differences, all 15 of the scientists commonly started
with candidate genes from prior experiments and queried
the MiMI database for results on gene attributes and gene
product interactions. From query results, they conducted
the same type of analysis. They all sought to identify inter-
actions and genes that were previously unknown and to
find links between previously unknown genes/gene prod-
ucts and those known to be associated with mechanisms
of their targeted disease. Ideally, the scientists wanted to
contextualize this interplay of known and unknown genes
to discover a plausible, credible biological story about dis-
ease mechanisms, a story convincing and credible enough
to report to colleagues and test through further experi-
ments. They did not conduct comparative analyses such as
uncovering connections between different diseases or
associate phenotype and genotype data.

All of the scientists structured their inquiries in similar
ways, and all engaged in the same higher order reasoning
processes. Specifically, the scientists progressively, and at
times recursively, reasoned by classifying, by attempting
to build mental models of causal relationships over time
and space, and by trying to put together plausible and
credible biological stories. All of the scientists validated
continuously and conducted their work through the same
stages of exploratory analysis (see Table 1).

Results cover only the first three stages of analysis shown
in Table 1. As can be seen from the percentages of scien-
tists who completed each stage in the table, scientists did
not complete causal modelling or story building. I now
turn to the knowing and reasoning behaviors that the sci-
entists shared in each stage of their real world research.

Cognition and analysis in Confirmation

During Confirmation, scientists primarily sought to trust
the accuracy and completeness of the data and to be
assured that the concepts, data, and interactivity offered
by the tool fit their analytical intentions and practices as
scientific experts and researchers. Scientists' levels of trust
affected their immediate willingness to engage with the
tool for their intended explorations and tacitly influenced
their sustained engagement. These validation processes
took the form of affirmation. Scientists perused results
and applied the following processes and actions:

As Table 2 shows, the tools satisfied a great deal of scien-
tists' needs for Confirmation. For some needs, partial sup-
port was the best tools offered. When support was partial,
scientists often spent a good deal of time — upward of ten
minutes - searching for information or navigation links
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Table I: Stages of exploratory and explanatory analysis shared across scientists

Stage (its dominant reasoning)

% completing this stage Description

Confirmation (validation) 100% Scientists vetted query results and the tool for accuracy, reliability,
and timeliness
Example: Look for familiar literature references.

Separating Wheat From Chaff 85% Scientists classified relationships to find genes and protein

(classification and validation)

interactions of interest

Example: Locate an interaction between a candidate gene from
experimental findings and a gene product known to be associated with a
disease

Beyond Read-offs 0
(Model-based reasoning and validation)

Scientists wanted to place relationships of interest in local and global
contexts to mentally model explanatory biological events relevant to
a disease.

Example: Contextudlize significant regulatory relationships in pathways.

Story-building 0
(narrative reasoning and validation)

Scientists sought to turn explanations about biological events into
new, credible and plausible biological stories.

Examples considered to be credible were not available based on scientists'
progress.

that, in fact, the specific version of the tool did not yet
include. The scientists reported that this amount of time
for confirmation was too long. As one scientist com-
mented, "It would be nice to see when no data are availa-
ble instead of having to hunt around." The scientists may
have been annoyed at this point but not enough to keep

Table 2: Confirmation stage processes of validation

them from moving forward in analysis to classification
reasoning.

Cognition and analytical practices during Separating the
Wheat from Chaff

In the next stage, Separating the Wheat from Chaff, scien-
tists classified genes and interactions by reading off data

Processes of Validation Actions Supported?
Compare results to one's own experimental - Sort by gene name Fully
findings for affirmations and contradictions - Scroll to genes of interest
- Hyperlink to details relevant to experiment
Determine accuracy of results by hunting for - Sort by gene name Fully
redundancies or synonyms - Scroll to various known genes
- Check "Other gene name" field
- Scroll to assure no duplication are displayed
Determine the accuracy of the data and the - Search for cues or information indicating Partially
data sources "data autobiography" or provenance (e.g. Not easy at the time to uncover inner
source database, last date updated, logic or processing
rules for matching and integrating items across
multiple databases sources and for determining
a common Gene ID)
- Judge the credibility of the underlying logic
Determine the completeness and relevance of - Sort by gene name Partially

the data

- Scroll to find various known genes or
interactions and see if they are included

- Confirm expectations for: # of interactions #
of literature sources for a gene, names of
interactors, dates of literature references, GO
annotations

- If data do not confirm expectations, look for
cues indicating information about logic and
rules for merging and integrating data

Did not at the time provide counts

Page 5 of 17

(page number not for citation purposes)



Journal of Biomedical Discovery and Collaboration 2009, 4:2

from the displays. They aimed to winnow down the large
set of query results to relationships of interest for further
explanatory analysis. They read off and interpretively
related multiple factors, many of which they had earlier
confirmed but only in a cursory fashion, such as GO
annotations for molecular function, cellular component,
biological process, and homology. Now making critical
and binary judgments, the scientists uniformly sought to
separate "interesting” from "not interesting" genes and
relationships.

Many of the scientists uncovered to their satisfaction
known genes/interactions relevant to their targeted dis-
ease. For example, one researcher of bipolar disorder
found interactions involving FOS, which he knew to be
associated with response and non-response to lithium
treatment. This finding of a known response gene trig-
gered the scientist to examine more known and unknown
interactors of FOS and later to branch out from select
interactors to analyze unfamiliar and potentially mean-
ingful functional clusters. The tool design functioned well
for finding known genes and interactions.

The scientists also specifically looked for unknown genes
and interactions. Rarely were they able to make these
judgments simply by focusing on one property, as this sci-
entist happened to do: "It's an RNA phenotype," he
declared. "Embryonic lethal. That means it is important. It
doesn't tell me more than that. It just tells me it's impor-
tant." Rather the scientists mostly classified data by inter-
relating many factors at once drawn from several sources.
They often combined their commonly applied heuristic
strategy of looking for functionally similar molecules with
other strategies and data, as this scientist reveals:

The Description shows this one has the potential to be
involved in some of the processes we're interested in.
[She links out to BLAST to find what other organisms
have the protein]. This interactor is in all organisms
but yeast. That's a good sign that I didn't know. It's in
all the things we study. Now let's see titles on literature
about it. The titles suggest this protein is involved in
transcription in the nucleus, and that's unrelated to
what we do. But it's kind of complicated. These pro-
teins are thought to function in the nucleus and cyto-
plasm. It makes me cautious that there are all these
papers citing a function in the nucleus. I'm cautious
but it doesn't entirely rule this protein out for me. So
I'm interested in this one very much. That's my third
interesting protein so far [out of 12 that she has
explored].

The scientists knew that attributes such as function can
vary within a gene by time and tissue and that regulatory
proteins might have multiple disparate and, at times,
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opposing functions depending on cellular context. Thus
even during read-offs they dealt with uncertainty.

Classification processes during the Separating the Wheat
from Chaff stage were often lengthy - lasting 30 minutes
or more. In this process, scientists often analyzed any-
where from 20 to 50 interactors of genes of interest, a
complex task, as exemplified by this biomedical
researcher's comment: "The problem is that there are all
these potentials, and it takes so much time to go through
each one and figure out what this means." Notably none
of the scientists saved or commented aloud about wanting
to save anything of interest that they found here or later.
Saving seemed to require more confidence from ongoing
validations than the scientists had achieved.

Validation processes took a different form in this stage
from the affirmations of Confirmation. Now seeking to
establish reliability, the scientists judged whether interac-
tions of interest might be false positives. Ideally, scientists
wanted test statistics:

What is the p-value of this interaction with MYC? Why
does MiMI think there is an interaction? Based on
what literature? I need a p-value to show the likeli-
hood of the interaction and the strongest interactions.
I want listed interactions ordered by p-value.

Most of the scientists recognized that open source tools
such as MiMI - tools that integrate data from public data-
bases — were unlikely to display test statistics. As an alter-
native, the scientists figured they could link out to
PubMed and scan relevant articles for p-values. Linking to
the literature, however, was time consuming, and the sci-
entists asked if there was a way to "filter" (meaning, con-
struct complex queries) to see only the literature relevant
to certain properties of interest. Unfortunately, an easy-to-
use complex query form was not yet available, and scien-
tists could not get to relevant literature quickly to validate
the reliability of "interesting" items.

The scientists soon grew impatient with continuously
clicking to various articles in seemingly random ways.
They instead sought surrogate evidence for reliability, evi-
dence they could extract directly from MiMI or MiMI-
Cytoscape displays. They found and were pleased with the
following surrogates for validation: Counts of peer-
reviewed articles that cited an interaction or protein ("the
more the better"); counts of experiments (# of evidences)
producing the same outcome ("the more the better"); and
types of experiments producing outcomes ("I'm skeptical
of yeast 2 hybrid. It has too many false positives"). Other
surrogates included extracted sentences about interactions
mined from full text PubMed Central articles - a feature
implemented in later versions of MiMI-Cytoscape during
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field testing — and scientists' reliance on their own prior
knowledge, for example:

I see FLOY interacts with a protein that I don't know:. I
can see where it's logical. They're functionally similar
though not identical. Both have something to do with
conditions of metabolism and nutrient status in the
cell. I can see some connection.

Two of the scientists who did not achieve ample confi-
dence reached an impasse due to a lack of confidence at
this stage of analysis. One of them, a biostatistician,
demanded test statistics. The other, a biomedical
researcher who was examining members of the Bcl2, Bax
and BH3 subfamilies based on two years of research,
wanted to immediately identify and move quickly to liter-
ature she had not previously read. Unable to sufficiently
achieve this objective, the researcher's trust in the tool's
ability to address her intended analytical practices dimin-
ished. She subsequently downgraded her goal from
hypothesizing about the protein family to browsing the
literature for other projects. The other scientists eventually
reached impasses, as well, but not until later in the flow of
analysis.

The transition from classification to mental modelling
After finding genes and interactions of interest, scientists
tacitly began to shift from asking "What?" to asking
"How?" and "Why?' questions for causal explanations.
One of the scientists who had found relationships of
interest now moved forward, describing this transition as
follows:

Lists don't make it now. These genes and interactions
are important for biological reasons. What is the com-
mon element they bind to? How do they interact and
is that route affecting cancer progression?

For their narrowed down set of interesting genes/interac-
tions, scientists sought to relate the set to cues and multi-
dimensional information that would credibly suggest and
contextualize biological dynamics of change, stability and
consequence. During the transition, the scientists notably
did not seek to engage in full fledged model-based reason-
ing yet. They simply wanted evidence that they could,
given the tools and data. Specifically, scientists looked to
see if the tools provided the following:

Is there a physical interaction or regulation between
them? It's vital to know what kind of connection it is
to know functions. Does it belong to the same family?
Is it a positive or negative regulation?

Can I find possible targets where auto-antigens can be
present, especially binding sites. I'm also looking for

http://www.j-biomed-discovery.com/content/4/1/2

insulin receptor subunits. It would be great to see a
break down of the alpha and beta chain to see if we
can find more information on the receptor itself.

Filters are too limited. I need to filter on molecule
type. I [also] need to know relationships between mol-
ecules other than interaction. There could be some-
thing going on that is not a protein-protein interaction
or protein-DNA interaction.

As part of this initial mental shift to causal modelling,
some scientists began to contextualize their interesting
sets by relating networks to data on genes from their own
experiments, such as significance statistics on differen-
tially expressed genes. One scientist who was studying the
efficacy of lithium in bipolar disorder manually checked
network displays against his spreadsheet of expression
data and commented:

If I manually cross-check this graph to some of the
genes from my experiment. I see that in the Wnt path-
way the transcription factor GSK3 in this sub-network
of interest is down. But that doesn't make sense for
lithium treatment [which inhibits GSK3]. And Beta
Catenin should be activated. That should make cells
grow. Everything should be up. Why is GSK3 down?
Hmm. TCNF is down. Let me look at the genes around
TCNF. SMAD4 is down. Let me look at the TGFb path-
way where it connects to SMAD4. What genes in that
pathway may be making SMAD4 go down because
they are inhibiting TCNF?

This scientist and several others in the field study would
have liked to import into Cytoscape his experimental sta-
tistics about genes that were significantly differentially
expressed. Data import was available in Cytoscape but the
scientists unfortunately did not know it was. Conse-
quently, none brought in data. Some instead manually
cross referenced their own tables with the tools but cogni-
tively they could do very little complex multidimensional
analysis and validation this way.

As the scientists made a transition from classification to
causal mental modelling, they also wanted to be sure that
items they had deemed interesting so far - and worthy of
additional analysis — were, in fact, interesting and worth
the effort. They validated by looking closely at links con-
necting proteins (nodes) to see if it was possible with the
tools to differentiate types of interaction (regulatory,
physical and the like) or types of experiment showing an
interaction. Additionally, they sought to validate whether
network configurations involving their interesting genes
and relationships were by chance alone, as seen in the fol-
lowing think-alouds:
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Is there even something significant about this network
structure that would not occur just by chance?"

I fear making a connection between these genes and
[the] Wnt [pathway] just because they are related at 3
steps out or less. If [ randomly give two gene names,
how many genes are there between by chance alone?

When pressed to describe a model that might fit these
desired tests of significance, however, the scientists were
uncertain. They all said that because they sought confi-
dence in the biological significance of a network, they did
not merely want common network statistics, such as
hypergeometric distributions or average connectivity.
Unfortunately, for this hard problem of singling out bio-
logically meaningful network structures, none of the sci-
entists could specify the relationships that might suffice
for a statistically sound model, and few of them realized
the nontrivial computational demands this significance
testing implied. Notably, no scientist sought predictive
measures, perhaps due to an inadequate foundation of
confidence at the outset.

Table 3 details the evidence and available interactivity the
scientists sought.

As Table 3 suggests, the knowledge representations that
the scientists required for making a transition from classi-
fication reasoning to causal modelling ran the gamut from
straightforward usability improvements (e.g. a greater
transparency in available data import features) to
uncharted computations (e.g. test statistics). Table 3 also
shows that development efforts for many of these user

Table 3: Common knowledge representations desired the transition
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needs are non-trivial (e.g. embedding adequate interactiv-
ity into SAGA and KEGG pathway graphs and adding ways
for users to manipulate views and data). For this set of
wide-ranging user needs, the scientists' analytical
demands were not adequately satisfied in the versions of
the tools used in the study, and only three of the 13 scien-
tists continued to the Beyond Read-offs stage for deeper
insights.

Cognition and analytical practices during Beyond Read-
offs

The three scientists who engaged in Beyond Read-offs did
not get very far in this stage. Thus results in this section
depend more on interview responses than in previous sec-
tions. During interviews the scientists discussed insights
they would like to have gained in the Beyond Read-offs
stage, framed as questions and covering the following
relationships:

e How do relations between biological entities change
when the same genes are considered in different func-
tional contexts?

e How do protein structures and composition change
based on cellular conditions?

e What integrated and coordinated functions occur in
complexes and relationships between them?

e What regulatory processes, agents, and intermediating
conditions are at play that may explain the disease being
studied?

Analytical Function Knowledge representations/interactions needed Available? Easy to view/anticipate using?
for the transition to causal modeling
Contextualizing Expression values from one's own experimental data as v Yes, but not found
cues about regulatory processes and paths
Indirect relationships and paths between proteins in v Required time-consuming filtering
networks of interactions
Functional pathways related to sets of interactions v SAGA, but not inter-active; or side by side
Homology or pathway comparisons between species to v Yes
see if molecules or interactions are conserved
Ability to filter by multiple variables at once or to filter to No No; strings in a field
only the shared interactors between specified genes
Test statistics No No
Detail Types of interactions: Physical binding, activation/ Partly Buried in NLP free text; incomplete knowledge
inhibition, family member interactions, transcription/
expression, translocation/secretion, phosphorylation
Types of molecules: Distinctions between genes, proteins, Partly Incomplete knowledge
chemical effectors DNA, mRNA, protein complexes,
mRNA, enzyme
Experiment type v Strings in a field
Ability to color code by attributes v Time consuming
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Conceptually and technologically, this reasoning required
more immersion into biological uncertainty and incom-
plete knowledge than analysis so far had involved, and it
required more deliberate inferential reasoning. Inferences
included the use of multiple strategies and reasoning
across scales. To draw inferences, scientists sought cues
about localized biological events - conditions, contexts,
and interactions that potentially influenced biological
functional behaviors, changes, and self-regulation. For
example, the scientists coupled analysis of protein interac-
tions and pathway networks to see if this cross referencing
might suggest mediating groups of genes for a given dis-
ease. For these questions, the scientists went beyond read
offs and, in doing so, expected to interact with the data
with a great deal of user control.

The scientists became stymied when interface displays did
not afford adequate interactivity. For example, referring
back to Table 3, tabular displays that were linked to inter-
active network displays let scientists read off many impor-
tant pieces of content, such as interaction type, molecule
type, experiment type, and concatenated strings of canon-
ical pathways and GO annotations. Notably, multiple
attributes pertaining to a gene were formatted as concate-
nated strings, and some fields themselves were defined as
a compilation of many values - e.g. "Interaction Type"
contained values for interaction type, experiment type,
and biochemical reactions. For Beyond Read-off purposes,
however, this data structuring obstructed the scientists
from grouping and selecting items based on single
attributes and from seeing just the selected items dis-
played and highlighted in the network view. Nor could
the scientists color code or aggregate by individual (not
stringed) field values. Additionally, with this version of
Cytoscape and with plugs ins other than MiMI available at

Table 4: Support scientists would have liked for explanatory analysis
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the time, the scientists could not selectively extract sub-
networks by trait (e.g. pathway) and further manipulate
or contextualize just the sub-networks. As one of the three
scientists participating in Beyond Read-offs commented
in think-alouds:

These genes are involved in multiple concepts. Now I
need to look at them biologically and single out just
this one annotation. Is this concept up in the context
of a cell that is "just resting" but down in a cell that is
proliferative?

Causal inferences, moreover, had to be warranted and
defensible. The scientists who engaged in Beyond Read-
offs looked once more for statistical evidence that network
structures had potential biological meaning and were not
simply chance occurrences. For example, when the scien-
tists used SAGA within MiMI-Cytoscape to match poten-
tially meaningful sub-graphs embedded in the whole to
canonical pathways, they wanted to know how confident
they should be in the match, given the accuracy of the
underlying similarity matching algorithm. The scientists
also wanted to link to and revisit literature about relation-
ships of interest to read details that would help in judging
credibility.

In the field study, scientists spoke about the content, avail-
able interactivity, and workspaces they would liked to
have had to actualize their beyond read-off intentions
(See Table 4). Some of these overlapped with transition
stage needs:

Unfortunately, with these versions of the tools, none of
the scientists found enough of what they were looking for,

Content Edges in networks weighted by biological traits

Overlays of protein-protein interactions and disease associations

Overlays of protein-protein interactions and relevant pathways

Distinctions between proteins and other molecules that might serve as mediators of interactions, e.g. enzymes

Test statistics and counts (e.g. # of interactions, # of articles, overrepresentation of a functional term) and perceptually encoding

nodes or links by them

Interactivity

Updating of interactions (e.g. selection, color coding) across views — e.g. across overlaid networks
Facile filtering (users had to use mini-scripting to filter)

Facile color-coding (at the time it took |5+ steps to color code)

Integrating one's own data into the displayed dataset

Simplifying networks through zooming, filtering, color-coding, expanding some nodes but not others, mapping only select

neighbors to pathways

Conducting computations on networks to find e.g. shared paths to identify indirect interactions or recurrent or aberrant
patterns that might signal a biologically significant set of relationships

Workspaces

Spaces for comparing different networks side-by-side with dynamically linked interactions

Spaces for aggregating entities on the fly into manipulable qualitative attributes based on emerging knowledge

(e.g. normal vs disease conditions)
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and none was able yet to gain deep insights for building
hypothetical stories.

Discussion

Results show many common patterns across cases in sci-
entists' ways of knowing and reasoning but suggest, as
well, that creating a match between a tool and a scientist's
cognition might be specific to a scientist's domain special-
ization and analytical objectives. The biostatistician, for
example, as a statistics specialist distinctively cut short
even her surface level insights for want of hard test statis-
tics. The biomedical researcher, whose prime analytical
objective during the Separating the Wheat from Chaff
stage was to quickly hone in on relevant and previously
unknown literature about her target gene family, also
encountered impasses but in her case because of her dis-
tinct analytical objectives.

In the rest of the field cases, results show that MiMI and
MiMi-Cytoscape, which are emblematic of other bioinfor-
matics tools, have advanced to enabling scientists to
access and understand rich stores of heterogeneous data.
The tools provided important content and displays that
facilitated scientists in well-structured or formulaic
aspects of query and analysis tasks involving reading off
data to confirm query results, locating known and
unknown genes/interactions, and separating out those of
interest. The scientists were able to make critical judg-
ments and learn new things from the data. Moreover,
these tools made major steps in providing surrogates for
test statistics to help scientists achieve confidence. These
advances have opened the realm of systems biology to
countless everyday scientists in biomedicine. But results
also suggest that in making these tasks accessible the tools
sparked scientists' motivations to go beyond read-offs. As
results reveal, designs beyond read-offs have to differ in
kind not just degree from designs for straightforward data
extraction for affirmations or classifications.

Admittedly, analytical integration for hypothesizing is a
long exploratory process, and it may not be surprising or
troubling that scientists did not achieve a well-developed
hypothesis at the close of the observation periods. But
findings from this study - and from others - suggest that
tools today are not sufficiently launching scientists on this
long term hypothesizing process to begin with. This
whole process requires integrating classification, mental
modelling and narrative reasoning - that is, facilitating
the move from lists to stories. Whether bioinformatics
developers strive to build one tool or many to fulfil this
purpose, the goal must be to support scientists in integrat-
ing complementary modes of reasoning and in interweav-
ing "loose" and "strict" analyses for explanatory inquiries
under uncertainty. Supporting only one mode of reason-
ing isolated from the rest - regardless of which mode it is
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- or insufficiently supporting transitions between them
impedes the formulation of hypotheses.

One thing that is clear from the results in the Transition
and Beyond Read-off stages is that "information delivery"
is not enough to satisfactorily support this analytical flow
and integration. In the field study, a good deal of the data
relevant to scientists' transitional thinking and causal
mental modelling was available ("deliverable") from the
tools but was often hard to find or time-consuming to
encode into graphics. Equally if not more important,
available data were not represented as scientists needed
them to be for the intellectual processes of mentally mod-
elling causes and outcomes. For example, the data were
not represented in ways that conveyed or cued biological
meaning and credibility. Moreover, for the manipulations
of data that are prerequisite to constructing knowledge
during causal mental modelling, the data often were not
structured right, for example for users to cluster, filter,
color code, and lay out graphs. As researchers in visual
analytics show, different types of analysis tasks demand
specific visual representations of knowledge. For example,
users benefit most from side-by-side views - such as the
network and tabular views in MiMI-Cytoscape - when
their tasks involve detecting patterns of interest and mak-
ing transitions to new modes of reasoning. But they need
single views rich in relevant information and conceptual
associations when their goal is to understand causal rela-
tionships and diagnose problems [33]. Conceiving and
then designing these rich views are vital but challenging.

The scientists in the study did not engage seriously in nar-
rative reasoning but research suggests that support for
story building also differs dramatically from support for
classification reasoning and read-offs. In story building,
scientists use narrative structure to recount chronological
events and tensions leading to an explanatory result,
events with actors, actions, scenes/contexts, themes, and
agency. For example, they may associate and synthesize
their cumulatively generated knowledge to tell an hypoth-
esized story about two potentially influential proteins in a
localized context - the star actors and scene in the story.
The story would capture how the proteins are encoded by
genes that lie on separate disease-relevant chromosomes,
how they function in a disease-related intracellular signal-
ing pathway, and how evidence suggests a genetic variant
that may cause one of the proteins to vary in structure,
activation, and localization, thereby affecting variation in
the other protein in disease susceptibility. Noting the
challenge of supporting this mode of synthesizing knowl-
edge into convincing stories Kumar et al. remark that for
scientists story building can actually become inhibited not
helped by data or "descriptor overload," a phenomenon
that occurs when displays "deliver information" but fail to
draw scientists' attention to salient relationships and cues
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about specific biological contexts, conditions, events, and
actors, and interdependent actions [26]. Similarly,
research shows that overly-formalized narrative objects
and their properties do not effectively support narrative
reasoning [27].

My field study results show that for the explorations scien-
tists conduct in explanatory systems biology analyses, tool
designs and scientists' cognition are mismatched in the
following three ways:

I. Mismatch related to validation

Confidence in the data, tools, and one's own interpreta-
tions of knowledge representations was fundamental to
scientists' willingness to engage in and continue engaging
in systems biology analysis. Validations occurred from the
start during Confirmation and continued throughout the
analysis. For Confirmation and Separating the Wheat
from Chaff the scientists needed the following data and
interactions for their validations: Surrogates for test statis-
tics, such as provenance; counts of interactors, articles,
and experiment types associated with an interaction; easy
sorting of table fields to locate expected results; and expla-
nations of tool algorithms for processing and integrating
data. These features and content were largely present but,
at times, were incomplete. Resolving the incompleteness
and thus the mismatches for these earlier stages of analysis
is not particularly difficult to achieve technologically.
Doing so would be a low cost way to enhance scientists'
trust early on and possibly instil more tolerance for uncer-
tainty later. It could be that the more confidence scientists
gain early on, the more "forgiving" of the tool and data
they will be later when dealing with the unavoidable
incompleteness and uncertainty of contextualizing bio-
logical relationships.

Results show that in later stages ambiguous concepts such
as interaction, pathway, and molecule type became
increasingly important to scientists' analysis and valida-
tion of potentially meaningful relationships. Similarly,
the scientists increasingly demanded statistical evidence,
evidence that often is not easy to mine and provide tech-
nologically or that may be non-existent. The field study
suggests that part of these complications to validation and
consequent mismatches may be allayed if tools give scien-
tists easy means for bringing in their own data and statis-
tics so that they can integrate and analytically manipulate
these data with their query results. The development of
more statistical models or presentation of test statistics in
which scientists can believe is also needed to reduce tool
mismatches with validation needs and practices and to
help scientists build confidence.
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2. Mismatch related to transitions from classifying to
model-based reasoning

The importance of helping scientists make the transition
from classification to model-based reasoning cannot be
overemphasized. Given the high rate of attrition at this
stage in the field study, it is clear that support in tools for
this transition is as important as facilitating each of the
stages itself.

During this transition, scientists made judgments about
the value of the displayed knowledge representations for
their intended inferential purposes. The scientists were
not as concerned as earlier about the literal content of the
data. Rather knowledge representations and their value to
an analysis required data to be structured in ways that
allowed the manipulations the scientists sought to per-
form to find causal relationships. The scientists needed to
see that they could manipulate views by interacting with a
single value for an attribute, such as a non-stringed value
for molecular function, pathway, or biological process.
The scientists also needed to inter-relate select sets of
attributes to draw inferences about possible chains of
events and effects. Moreover, the scientists needed some
indication that they would be able to negotiate the mean-
ings of ambiguous concepts relevant to relationships of
interest vital to explanatory inferences, such as interaction
type. Finally, they needed knowledge representations that
cued them about the connections constituting a protein
cluster, the purported strength of the connections, the bio-
logical implications, and statistical warrants for the clus-
ters. It was also during the Transition that the scientists
checked to see if the tools adequately provided means for
interacting with and transforming data in scientists'
intended ways.

Mismatches between tools and the cognitive transitions
scientists made in the move from lists to explanations
may be reduced if views of data and relationships more
deliberately direct scientists' attention selectively - for
example, to good (biologically meaningful) entry points
in complex network associations. Mismatches may also be
reduced if tools provide easy means for users to arrange,
color code, lay out, and sub-divide/filter networks in bio-
logically meaningful ways. The problem is not rich dis-
plays of networks and data per se. Visual analysis research
shows that for complex tasks displays rich in data actually
succeed in evoking productive selective attention despite
their density if they include domain knowledge relevant to
particular types of questions/reasoning [34]. If presenta-
tions provide wrong or incomplete information or insuf-
ficiently emphasize relationships relevant to explanations
ttention to only surface level data, analytical performance
and accuracy for a higher order tasks suffer [34,35]. For
networks, this relevance requirement means drawing a
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user's eye to the high dimensional relationships through
color, layout, and groupings.

Additionally, mismatches for scientists' transitions to
causal modelling may be diminished if tools provide bet-
ter cues about conceptual relationships. Choices of lay-
outs can provide such cues, with research in visual
cognition showing that when the same connections
between nodes are spaced dissimilarly users judge differ-
ent relationships to be important [36]. Overall, building
domain knowledge about relationships into designs- not
delivering data elements per se - is crucial for overcoming
transition-related mismatches.

3. Mismatch related to causal mental modelling

For causal mental modelling, the conceptual relationships
that the scientists sought were fluid, dynamic, and not
fully formalizable. To uncover them through inference,
the scientists expected to rearrange and transform rela-
tionships and to view the same data from many perspec-
tives and levels of abstraction. They expected to
differentiate normal from abnormal biological behaviors
and inferentially distinguish causes from catalysts. In the
process, they expected to be able to freely and easily
change views of data relationships. Mismatches occurred
between expectations and tool support because represen-
tations that afforded classification earlier were now insuf-
ficient. Moreover, interactivity for data manipulation was
not attuned to the explorations required for inference
amid ambiguity, incomplete knowledge, and multiple
scales. The necessity of this interactivity cannot be over-
emphasized. User controlled interactivity served as impor-
tant a function in being able to produce new knowledge
and gain deep insights as content.

For example, scientists expected to be able to recursively
re-assemble relationships and potential causal associa-
tions (spatial transformations) in order to infer possible
temporal events. Structuring layouts by regulatory rela-
tionships organized by biological region would signal
interactions over time and space. Some scientists also
spoke of wanting to transform workspaces and data rela-
tionships into views of overlaid networks - those of inter-
acting gene products, canonical pathways, and diseases
associated with pathways.

These presentations would have evoked biological situa-
tional awareness. Scientists knew they could not see actual
representations of the dynamics and variability of the
genomic and molecular biosystems they sought to ana-
lyze. They needed cues from the data and views to infer
multi-dimensional chains or loops of actions and out-
comes. They wanted certain content to be perceptually
highlighted and wanted cues from layouts and groupings
about potential biological meanings inherent in visible
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network configurations. Additionally, side by side graph-
ics (e.g. canonical pathways and a scientist's proteins
interactions of interest) would have cued functional asso-
ciations between previously known and unknown genes.

Other bioinformatics studies have similarly articulated
this need for tools to "go beyond simplistic graphical
models and mere compliance with accepted standards to
provide many different types of network views, each at a
different level of abstraction" because relationships
among proteins, interaction partners, and interaction
types often differ based on a cell state or location [32,
2657]. Specifically, researchers have called for more path-
way information, overlays and relationships between
molecular interactions and pathways, views of regulatory
relationships within pathway contexts, and molecular
interactions in relation to many interconnected pathways
at once [28,29]. Researchers also have argued that tools
need to provide aggregates and details of the same ele-
ments, interactivity for selectively expanding neighbors of
specified proteins, capabilities for users to specify seman-
tic substrates for layouts, and sub-graphs of network
motifs tied to biological concepts [10,29]. Results from
the field study corroborate the centrality of these design
issues and now show the direct connection between them
and scientists' core processes of explanatory reasoning.
Field study results also underscore the need to couple
these views with adequate interactivity for data and view
manipulation and with support for scientists' continu-
ously interleaved validation processes. Without address-
ing such design improvements, mismatches are likely to
continue.

Conclusion

In the current bioinformatics research literature, models
of scientists' flows of analysis for systems biology explora-
tions are incomplete. For design purposes, more compre-
hensive, empirical models of scientists' higher order
cognition are prerequisites for creating tools that effec-
tively and usefully match biomedical researchers' actual
ways of knowing and reasoning. In this field study, as in
other bioinformatics usability research, scientists could
successfully pose and answer "What?" questions with the
tools — e.g. What hidden relationships innovatively mined
from the literature show unexpected biological relation-
ships? But the scientists — and biomedical researchers in
general today - could not adequately achieve new explan-
atory insights into the how's and why's of biological asso-
ciations and outcomes within and across biological
regions. Given scientists' shared stages of analysis, their
multiple complementary modes of reasoning, and their
interplay of loose and strict analysis, it is clear why scien-
tists in this study - as in other studies — more easily gained
surface level insights than deep insights. Tools strongly
support surface level insights by categorizing and organiz-
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ing data displays in ways that resonate with scientists'
approaches to classifying data and judging relationships
to be broadly interesting or not. By and large, scientists
could perform these tasks through read-offs, and out-
comes were motivating. Yet once scientists gained surface
insights, they wanted to do more. They wanted to con-
struct credible hypotheses. Findings show that to facilitate
deep insights and hypothesizing bioinformatics tools
must do a better job of matching scientists' needs and
practices. They have to better match scientists' processes
for validating throughout analysis, their transition from
classification to explanatory mental modelling, and their
processes of mental modelling across scales and amid
uncertainty.

For design purposes, the field study results reveal the
important role that technologies for systems biology anal-
ysis play in scientists' exploratory cognition. Because tools
are the prime workspaces in which biomedical researchers
view and interact with representations of knowledge to
further construct and transform knowledge for hypothe-
sizing purposes, technologies shape the course and com-
pleteness of this analysis. To varying extents and with
qualitative consequences, tools shape scientists' inten-
tions and opportunities for causally exploring known and
unknown biological associations according to the
domain-driven standards of practice and excellence that
they value. As the field study shows, if tools do not match
scientists' intentions scientists will likely downgrade their
goals, no longer accepting a tool as an aid for formulating
an hypothesis. From this perspective, effective transla-
tional biomedical research hinges on tool designs match-
ing scientists' higher order cognition as influenced by
their domain knowledge and analytical practices.

The results of this field study suggest design objectives and
strategies that may reduce mismatches. More research,
prototyping, and formative evaluations are needed before
requirements can be specified at a fine enough conceptual
grain to inform scope (how many tools) and tool designs
in a widespread way. Toward this end, field study results
suggest that design choices should be informed by objec-
tives and strategies related to: generating trust, reducing
search and analysis spaces during classification activities,
contextualizing relationships for causal explanations,
highlighting and cuing biologically meaningful concepts,
and giving users flexible interactivity for core analytical
moves and strategies. The Supplemental Material provides
more details about these design strategies.

Creating optimal designs that support scientists in inte-
grating the multiple modes of reasoning required for
explanatory analysis under uncertainty is the next great
frontier in bioinformatics usability. In our national
center, NCIBI, the results of this study are now being
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addressed through many modifications and re-designs to
the tools, aimed at overcoming the three mismatches
described here.

Methods

The field study aimed to analyze biomedical researchers'
higher order cognitive processes for formulating hypothe-
ses during analyses of protein-protein interactions.
Results needed to be framed in a way that could inform
tool designs for greater usefulness for higher order reason-
ing. As in other human-computer interaction studies in
bioinformatics [37], qualitative field methods were used
to explore scientists' work practices and cognitive proc-
esses.

Participants and their research

Twelve biomedical experimentalists from a large univer-
sity Medical Center were observed and afterwards inter-
viewed as they analyzed protein-protein interactions and
related biological concepts to gain novel insights into dis-
ease mechanisms. Two cellular biology experimentalists
from the Department of Molecular, Cellular, and Devel-
opmental Biology and one biostatistician from the School
of Public Health were also observed and interviewed.
Table 5 shows the genders and roles of the scientists and
the number of times they were observed and interviewed.
Four of them worked in pairs, as shown by the groupings
in the table. Observations averaged 1.5 hours, totally
roughly 31.5 hours of observed sessions. Interviews were
conducted after each observation, lasting on average 20
minutes and totalling 8.9 hours all combined.

The scientists studied different problems, diseases, and
relationships. They proceeded at their own paces and
defined their own intentions, analytical tasks, moves and
strategies. All the scientists were familiar with and had
some experience in systems biology analysis.

Tools

The tools the scientists used - MiMI, MiMI-Cytoscape,
and SAGA (for subgraph matching) - have been described
earlier in the Results section. At the time of the field study,
the MiMI database was comprised of 117,549 molecules
and 256,757 interactions integrated from the ten data-
bases [38]. During the course of the study, MiMI evolved
from an XML database to a relational database to facilitate
multi-user and arbitrary query functionality. The MiMI
database provides extensive data on biological concepts
for molecules and interactions, as detailed in Table 6.

In the versions scientists used, three MiMI screens pro-
vided query results, which included, respectively: (1) an
overview of query results for selecting items of interest, (2)
a screen of detailed data on a selected molecule, and (3) a
screen of detailed data on a selected interaction (see Fig-
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Table 5: Inquiry and observation sessions per scientist
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Gender Role # Observations # Interviews
M Research Scientist 8 9
M Research Scientist 8 9
M Professor 2 2
M Postdoctoral Researcher | |
M Research Scientist | |
M Research Scientist | |
F Research Scientist | |
F Biostatistician | |
F Research Scientist | |
F Research Scientist | |
M Research Scientist 3 5
M Professor | |
M Professor | 2
F Professor | |
M Research Scientist | 2
Total = 21 Total = 27

ure 1). In the MiMI plug-in for Cytoscape the visualized
protein interaction network based on MiMI data and
query results was linked to a table displaying details about
the graphed genes, gene products, and interactions (see
Figure 1). Interacting with the graphics, scientists were
able to select data from the network and tabular views,
sort tables, lay out networks based on predefined layouts,
zoom, pan, and through extensive operations perceptu-
ally encode and filter data. They were able to use Cyto-

Table 6: Categories of information

scape's color coding (visual mapping) and other available
plug-ins, e.g. to see network statistics.

Data collection

In scientists' naturalistic settings one to two observers
took notes with IRB consent. IRB consent assured ano-
nymity to participants, no risk to their work or perform-
ance evaluations, and the freedom to end their
participation at any time. The scientists performed and

Types of Information Screen Types of Information Screen
Possible Names/Aliases Molecule Interaction/Direction Interaction
Biological Process [GO] Molecule Interaction Site Interaction
Molecular Function [GO] Molecule Conditions Interaction
Cellular Component [GO] Molecule Experiments Used Interaction
Homology Molecule Descriptions (from lit) Both

List of all Interactions Molecule Provenance Both

Page 14 of 17

(page number not for citation purposes)



Journal of Biomedical Discovery and Collaboration 2009, 4:2 http://www.j-biomed-discovery.com/content/4/1/2

[etnb1_human] -- [tf7I12_human]
Regort a problem with this entry.

225747

IntAC
ctnnb1-tcf712-2; unspecified role; unspecified role; prey; prey, human; Homa saplens; unspecified role; unspecified L 14788%
role; bait, bait, human; Homo sapiens, physical interaction; phiysical Interaction; aggregation

ctnnio1-tcf712-8, Crystal structure of a human tet-4 / beta-catenin complex, unspecified role; unspecified role; neutral
component, neutral component, human; Homo sapiens; unspecified role; unspecified rale; neutral component, neutral : '
component, human, Homo sapiens, direct interaction; direct interaction

tetd-ctnni1-1; Coimmunoprecipitalon reveals interaction between Tcfd and CTNNB1; unspecified role; unspecified role;
bait; bait, hurman; Homo sapiens; unspecified role; unspecified role; prey, prey, human; Homo sapiens; direct 147552
interaction; direct interaction

ctnnb 1-tef712-7, Crystal structure of beta-catenin and hicf-4, unspecified role, unspecified rale; neutral component; L

nolitral coamnanant hiirman' Homn canience iinenacifiad rala 1inenacifian rala naitral comnanant: naiitral camnnneant thhdod 1ATEEN

& gasz | Homo sapiens | All Molecule Types | All Data Sources | 1. Query genes + nearest neighbors|

Data Panel
HOw C
0 Gena Name Function Pathway Process

58 ACTA1 ADP hinding [G0:0043531], ATP hinding [G... muscle contraction [G0:0006936), muscle thi
317 APAF1 ATP binding [GO:0005524]; caspase activat.. | [path'hsa04115]; Apoptosis [path:hsa04... | casp activation via cytochrome ¢ [GO:000:
824 CAPN2 calcium ion binding [G0.0005509); calcium-... | Apoplosis [path:hsa04210], Focal adhes... | proteolysis [GO.0006508]

842 CASPY caspase activity [GO:0030683]; cysteine-typ.. | [path:hsa04115], Apoptosis [pathchsald... | apoptosis [GO:0006915], apoptotic program |
836 CASP3 caspase activity [G0:0030693]; eysteine-typ... | Neurodegenerative D [path:hsa... | apoptosis [GO:0006915); induction of apopto
840 CASP7 caspase activity [G0:0030683]; cysteine-typ... | Neurodegenerative Diseases [path-hsa... | apoptosis [GO:0006%15]; apoptotic program |
3 BIRC4 caspase inhibitor activity [60:0043027]; cyst.. | Apoptosis [path:hsa04210]; Focal adhes... | anti-apoptosis [GO:0006316]; apoptosis [GO:
604 BCLG chromatin binding [G0:0003682); DNA bindi actin cytoskeleton organization and biogenes
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thought-aloud during analysis. Sessions were not video-
or audio-taped; participants' laboratory spaces were often
too small and noisy. Scientists' processes for entering que-
ries were not studied.

The two observers and interviewers were experienced and
skilled in taking notes rapidly. During observations, they
captured the following data: Verbatim (or close to verba-
tim) think-aloud comments/questions; times at the start
and end of various sub-tasks; and observed actions, out-
comes and impasses. Observers recorded missteps - those
the scientists noted and those they did not. In think-aloud
comments, scientists typically conveyed and observers
captured various task objectives, intentions, deliberations,
lines of reasoning, confusions, confirmations, judgments
about emerging findings, reactions to impasses, and satis-
faction. Observers did not interrupt scientists as they
worked nor did they guide scientists toward "correct
usages" of tools or tool features.

Non-structured interviews after observations sessions
focused on scientists' cognition and needs for support
from the tools but were tailored to the specific observa-
tions, research problem, and analytical objectives of each
scientist. Interviews asked scientists about their tasks, their
reasoning behind task choices and behaviors, and their
ordering and combining of tasks. Interview notes
recorded scientists' responses verbatim - or close to verba-
tim - but did not similarly capture the questions posed by
the interviewer, since he or she often doubled as the note-
taker. Interview notes predominantly documented as best
the interviewers could the exact language of verbal
exchanges, sporadically adding impressionist notes that
highlighted a theme or pattern that seemed relevant to the
study. Some scientists participated in additional inter-
views that involved follow up questions about a scientist's
research project and methods.

Data analysis

Using qualitative methods for grounded theory analysis
adapted to design ends [39], notes of observations and
interviews were read holistically several times and then
critically analyzed. Data analysis related verbatim/near
verbatim think-alouds and interview responses to the
observed task behaviors, task durations, and impressions
from observers' notes. For each case, narrative and proce-
dural scenarios were constructed, capturing the scientist's
analysis for his or her research problem. When pairs of sci-
entists worked collaboratively, the observation of both
individuals was treated as a single case scenario. For cases
of analysis involving multiple observations, one unified
scenario was constructed for the problem under study.
Denser data due to multiple observations and/or inter-
views were not given any more weight. These cases typi-
cally just filled in details otherwise missing about

http://www.j-biomed-discovery.com/content/4/1/2

reasoning, scientists' flow of analysis, and composite
stages and tasks. Formal content coding was not applied
because the data analysis objective was not so much to
thematically or sociolinguistically characterize users and
their work or to theorize about higher order scientific cog-
nition per se. Rather the objective was to abstract context-
driven patterns of thinking and behaviour that could
inform design. Results from overly detailed coding typi-
cally do not translate readily into design.

Analysis was informed by theories of higher order cogni-
tion for complex analysis and visual analytics rather than
by cognitive models for low level procedures, which are
typically the unit of study in cognitive task or hierarchical
task analysis. Other theories relevant to computer-sup-
ported complex tasks also framed analysis but not as pre-
ordained conclusions. Relevant socio-technical concep-
tual frameworks from human-computer interaction,
design, and visual cognition afforded looking at the data
from multiple perspectives.

Outcomes were related to the analytical gaps in visualiza-
tion tools identified in [26]. Items scientists saved or men-
tioned wanting to save in each case were identified to
indicate if scientists placed enough value on outcomes
and insights to store them for later personal reference,
sharing, or both. Variations across cases were identified
and explained. From this analysis, a user model organized
around dominant cognitive processes in various stages of
analysis was developed.
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