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Abstract
Background: Most biomedical corpora have not been used outside of the lab that created them,
despite the fact that the availability of the gold-standard evaluation data that they provide is one of
the rate-limiting factors for the progress of biomedical text mining. Data suggest that one major
factor affecting the use of a corpus outside of its home laboratory is the format in which it is
distributed. This paper tests the hypothesis that corpus refactoring – changing the format of a corpus
without altering its semantics – is a feasible goal, namely that it can be accomplished with a semi-
automatable process and in a time-effcient way. We used simple text processing methods and
limited human validation to convert the Protein Design Group corpus into two new formats:
WordFreak and embedded XML. We tracked the total time expended and the success rates of the
automated steps.

Results: The refactored corpus is available for download at the BioNLP SourceForge website
http://bionlp.sourceforge.net. The total time expended was just over three person-weeks,
consisting of about 102 hours of programming time (much of which is one-time development cost)
and 20 hours of manual validation of automatic outputs. Additionally, the steps required to refactor
any corpus are presented.

Conclusion: We conclude that refactoring of publicly available corpora is a technically and
economically feasible method for increasing the usage of data already available for evaluating
biomedical language processing systems.

Background
Biomedical corpora are essential for the development and
evaluation of biomedical language processing (BLP)
tools. For instance, Tsuruoka et al. [1] show that their bio-
medical POS and named entity taggers perform better
when trained on biomedical corpora instead of the Wall
Street Journal corpus. Also, the availability of annotated

corpora in standardized formats is essential to compare
different BLP tools against each other [2].

Cohen et al. [3] surveyed the usage rates of a number of
biomedical corpora, and found that a small subset of
them represented the majority of uses of these publicly
available data sets: most biomedical corpora have not
been used outside of the lab that first created them. It is
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not known how many person-hours went into the con-
struction of these resources, but it is likely that they repre-
sent many person-years and hundreds of thousands of
dollars, not to mention the domain expertise – a consid-
erable investment of human and capital resources. Most
corpora remain unused, despite the fact that availability of
the sort of gold-standard evaluation data that they provide
is arguably the rate-limiting step in the progress of bio-
medical text mining.

Empirical data on corpus design and usage presented in
Cohen et al. [3,4] suggest that one major factor affecting
the use of a corpus outside of the laboratory in which it
was produced is the format in which it is distributed.
Although there is no universally accepted standard for cor-
pus encodings, the distribution in some well-known for-
mat seems to be a prerequisite for acceptance of a corpus
by the community at large [5-7]. A number of corpora
containing high-quality semantic information languish
unused today, largely due to idiosyncratic formatting of
their contents and/or lack of annotation into the text.
Smith et al. [7] showed that when corpora use similar and
relatively standard embedded annotation formats, stand-
ardizing their formats (and their semantics) was both
practical and valuable.

These findings suggest that there would be a large benefit
to the community in refactoring these corpora. Refactoring
is defined in the software engineering community as alter-
ing the internal structure of code without altering its exter-
nal behavior [8]. In the context of corpus linguistics, we
refer to refactoring as changing the format of a corpus
without altering its contents, i.e. the annotations, the meta-
data, and the text that those describe. The significance of
being able to refactor a large number of corpora should be
self-evident: a likely increase in the use of the already
extant publicly available data for evaluating biomedical
language processing systems, without the attendant cost
of repeating their annotation. But, how feasible would
corpus refactoring be? How much of the process is autom-
atable? How many person-hours would be required to
repair errors in the automated outputs? This paper exam-
ines those questions directly.

We examined the question of whether refactoring corpora
is practical by attempting a proof-of-concept application:
modifying the format of the Protein Design Group (PDG)
corpus [9]. This work contrasts with the work by Smith et
al. [7] in that the PDG corpus is a metadata corpus and not
a corpus in a standard or embedded format. We use the
term metadata corpus to mean a collection of texts that,
unlike a document collection, lists information related to
specific substrings in the text, but that unlike the typical
annotated corpus, encode this information without any

indication of the location of those substrings within the
text itself, (see [10] for a complete description).

We refactored the PDG corpus from its current idiosyn-
cratic format to a stand-off annotation format, WordFreak
[11,12], and a format similar to the Genia Project Markup
Language (GPML) [13] embedded XML format. To do
this, we performed a semi-automatic modification of the
format, using simple text processing to perform most of
the work and relying on manual intervention only to val-
idate the transformation and to handle cases that could
not be processed automatically.

To evaluate the feasibility hypothesis, we examined all
outputs at every step of the refactoring process. We quan-
tified errors made by the automatic portion of the work
flow and the time spent manually validating data and cor-
recting errors. The resulting output – the Protein Interac-
tion Corpus (PICorpus) – is freely available at the BioNLP
SourceForge website [14]. This work demonstrates that
corpus refactoring is largely automatable, that it can be
achieved at low cost, and that it results in useful and usa-
ble outputs.

Methods
The PDG Corpus
The original PDG corpus was constructed by automati-
cally detecting protein-protein interactions of two signal-
ling pathways in Drosophila, using the system described
in Blaschke et al. [9], and then manually reviewing the
output. Within the corpus, the data is distributed across
two sections in two different formats, corresponding to
the two Drosophila systems. The section of the original
corpus used in the refactoring process is the second one,
and it is that subset of the entire corpus that we mean
when we refer to the PDG corpus from now on. It is com-
posed of blocks of unannotated text and meta-informa-
tion that describe the protein-protein interactions
mentioned in text, (see Figure 1). Each block of text has
the following characteristics:

• a MEDLINE ID

• a list of interaction types, separated by semicolons

• a list of proteins, separated by semicolons

• a string of text in which the interactions and protein
interactors are mentioned

This data comprises a small corpus of 10,291 words,
about 283 sentences, and 417 protein-protein interac-
tions. It contains some residual errors in entity identifica-
tion and in relation extraction from the automatic
processing steps, which are described in the Results sec-
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tion. This data could potentially serve as evaluation data
for systems that extract information on protein-protein
interactions, an important factor in human disease [15],
as well as for other tasks, such as entity identification.

As Cohen et al. [4] point out, the PDG corpus was built at
the very beginning of the involvement of the computa-
tional biology community in text mining efforts. Its even-
tual public distribution was not anticipated at the time of
its construction. For these reasons, it is understandable
that the data was not prepared in any typical corpus for-
mat. The data was originally made available in an HTML
file, which necessitated stripping HTML tags before even
such simple tasks as performing a word count on the cor-
pus could be carried out.

We selected the PDG corpus for our pilot project for sev-
eral reasons. The PDG corpus is the smallest publicly
available biomedical corpus of which we are aware, which
suggested that manual validation times were more likely
to be within reasonable bounds than for any other corpus.
In other ways, the PDG corpus presents considerable chal-
lenges that refactoring other corpora would not. First of
all, the format of the data is completely idiosyncratic – no
other corpus is encoded quite like it. The process of refac-
toring the PDG will bring to light how to best handle
other idiosyncratically encoded corpora, of which there
are many.

Secondly, as noted, the PDG is a metadata corpus, mean-
ing there are no mark-ups mapped to specific strings in
the text. This introduces a number of challenges in map-
ping the original metadata to actual annotations that
some biomedical corpora would not present, since many
biomedical corpora contain annotations in the strict sense
of that word. Therefore, the PDG corpus, with its idiosyn-

cratic format and lack of annotation, provided an unusu-
ally stringent test of the feasibility hypothesis.

Refactoring methods
The structure and contents of the original corpus suggest
the logical steps of the refactoring process, listed here and
explained in detail below.

1. Retrieve the original abstract.

2. Locate the original source sentence in the title or
abstract.

3. Locate the interaction type keywords and the entities
(i.e., proteins) in the text.

4. Produce output in the new formats.

A variety of facts about the nature of the original corpus
posed challenges for the refactoring. First, the MEDLINE
IDs used in this corpus have since become deprecated.
Also, the text in the original version of the corpus was
altered from the MEDLINE records in a number of ways,
described in step 2 below. Finally, protein names in the
metadata were often altered by case toggling and removal
of punctuation.

Various obstacles had to be overcome at each of these
steps. Steps 1–3 required manual validation of the out-
puts, and sometimes manual correction, as well. We wrote
code to automatically process various aspects of the steps.
A human curator then manually examined the output of
each step, correcting it where necessary so that the output
at each stage was completely correct. In a few situations,
curators changed the content of the corpus. While this
calls into question whether what we did constitutes cor-
pus refactoring as we have defined that term, we found it
necessary in a few specific instances, detailed in steps 2
and 3 below and discussed in the Conclusion section.

1. To recover the original text from PubMed, the first step
was to look up the PubMed ID of each of the corpus
blocks. The PDG corpus references each evidence of pro-
tein interaction by a MEDLINE ID number. These are dep-
recated identifiers, so we mapped them to PubMed IDs by
submiting a query to the NCBI eutils MEDLINE UI/
PubMed ID matcher web site [16] which returned the
PubMed ID. We then used the PubMed IDs to retrieve the
corresponding abstracts automatically.

To validate the MEDLINE-to-PubMed mapping, we sim-
ply verified the presence of a PubMed ID in the output.
When a null ID was detected, the curator manually
retrieved the PubMed ID and abstract by searching
PubMed with the text provided in the original corpus.

Text block from original PDG corpusFigure 1
Text block from original PDG corpus. This block of 
text from the original PDG corpus shows the idiosyncratic 
format of the protein interaction annotations. "MED" is a 
deprecated MEDLINE ID. The words that follow "actions" 
are keywords denoting an interaction type between proteins. 
The words that follow "Proteins" are the interactors. The 
text that follows has been altered from the original 
MEDLINE publication.

MED 89264470:
actions:  binds; binds to;
Proteins: myc; E2F;
here we show that e2f binds to two sequence elements 
within the p2 promoter of the human myc gene which 
are within a region that is critical for promoter activity
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2. The next step in the mapping process was to find the
raw text in the PubMed abstract. Sentences in the original
PDG corpus have been altered by clause tokenization,
case folding, and punctuation removal. This made it
impossible to rely on string-matching to recover the orig-
inal sentences. Instead, we started by segmenting the sen-
tences of the abstract [17]. The sentence from the abstract
with the highest Dice coefficient as compared to the orig-
inal corpus text was chosen.

To verify that the correct sentence had been extracted,
curators accessed a file that had, among other informa-
tion, the full text of the retrieved abstract, the original sen-
tence, and the sentence our system extracted. If the
sentences matched, the curator did nothing. If the sen-
tences did not match, the curator read the abstract to find
the correct sentence(s). The curator copied the correct text
in place of the incorrectly or incompletely extracted sen-
tence. In cases where there was no match between abstract
sentences and original text, the curator searched PubMed
for the title and abstract of the publication by entering the
PubMed ID and choosing the appropriate text from
PubMed. In cases where the original corpus text did not
span an entire sentence, the automatic sentence extractor
expanded the text span to the sentence boundaries, and
the curator verified the expansion. This was done to pre-
serve the context around the protein interaction concepts
in text.

3. The third step in the corpus construction process was to
transform the interaction type and protein metadata into
annotations in the text. The interaction keywords appear
in the original metadata in the same form as they do in the
text (with the exception of case-toggling), but many of the
proteins have been altered in terms of case, whitespace,
digits and punctuation. Again, this made string-matching
unreliable. Our search algorithm automatically con-
structed regular expressions to find the text spans of pro-
teins and interaction keywords, allowing for optional
punctuation, and permitting optional hyphenation or
whitespace before and after digits in protein names. The
search algorithm then determined zero-based offset val-
ues for beginning and end characters of interaction words
and proteins.

To validate the mapping from metadata to text, the cura-
tors were presented with files that contained the extracted
sentence with tags around the annotated interaction key-
words and proteins. If the span of the character offsets in
the automatic output was incorrect, the curator fixed the
offset span. If the entity matched was not a valid interac-
tion word or protein, the curator removed the entity from
the metadata list. In some cases, the automatic entity
matcher did not find the entity in the extracted sentence,
in which case the curator either added the offset values

based on the correct entity in the sentence, or removed the
entity from the metadata if there was no valid correspond-
ing entity in the sentence.

4. Finally, the curated data from the last step was progra-
matically converted into the WordFreak and embedded-
XML formats via an application centered around the
Unstructured Information Management Architecture
(UIMA) [18-20]. Sentences and the associated annotation
data were imported into the UIMA framework where they
were placed in a standardized data structure, and then
outputted in their refactored form by an output-printer
component. Separate output-printers were developed for
the WordFreak and embedded-XML output formats, both
of which are completely reusable for future refactoring
efforts. The design of the application and incorporation
into the UIMA architecture promotes system extensibility.
A new output-printer can be developed and plugged into
the system without altering any upstream components.
Similarly, a different corpus, once placed in the UIMA
standardized data structure, can be refactored using any of
the available output-printers.

Validation of the final output-production step consisted
of checking for file format validity.

Output Formats
We produced our refactored corpus in two formats. One is
the WordFreak format used by the PennBioIE corpus
[11,12]. WordFreak presents annotated corpus data in a
stand-off format, meaning that the annotation informa-
tion is in one file and the raw corpus text is in a separate
file. Annotation tags are represented apart from the origi-
nal text as sequential values that refer to the beginning
and end character position of the entity in the corpus text
file. The other format is embedded XML similar to the
GENIA project's GPML mark-up language [13]. This for-
mat has the disadvantage that the annotation process
alters the original text by adding the annotation tags in-
line. On the other hand, the advantage is that there is no
mapping back from character offset values to the raw text.

We selected these formats for two reasons. One was that,
according to a corpus usage survey, there is evidence sug-
gesting that stand-off annotation and embedded XML are
the two most highly preferred corpus annotation formats
in the BLP community [21]. In fact, 50% of the survey
respondents said they preferred the embedded XML for-
mat. Another was that these two formats are employed by
the two largest extant curated biomedical corpora, and
there may be value in a move towards format standardiza-
tion.

It is important to note that, while we settled on these out-
put formats for this project, virtually any annotation for-
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mat may be rendered using the process described in this
project with little further effort or expense.

Results and Discussion
Format of the refactored corpus
The refactored PDG corpus, renamed the Protein Interac-
tion Corpus (PICorpus), is publicly available at the
BioNLP Sourceforge website [14] in both WordFreak and
GENIA-like embedded XML formats. Samples of the two
formats are shown in Figures 2 and 3.

Corpus validation
See Table 1 for a list of validation times for each of the
steps. The numbered steps described below correspond to
the numbered steps in the Methods section.

1. Very little time was required to validate the PubMed
IDs. Only one deprecated MEDLINE ID was not automat-
ically mappable to a PubMed ID. The curator used a por-
tion of the original corpus text string to search for the
appropriate article on PubMed and thereby recovered the
PubMed ID and abstract manually.

2. Verification of the sentence retrieval step took more
time and required more effort from the curator. Of the
283 corpus blocks, 33% (96/283) could not be perfectly
mapped to a text string in the MEDLINE abstract. Table 2
describes the performance of the automatic sentence
extractor. A certain amount of error was introduced
because the sentence extraction method compared single
sentences in the abstract to the original text, which was not
necessarily a single sentence. Forty-eight percent (46/96)
of these errors were because the evidence text given in the
original corpus was in fact more than one consecutive sen-
tence from the abstract. In these cases, the curator manu-

ally selected from the retrieved PubMed abstract the
multiple sentences indicated in the original corpus. Relax-
ing the single-sentence requirement could reduce errors in
this step by about half. Thirty-nine percent (37/96) had
original text that was mined from the title of the publica-
tion. This required the curator to search PubMed for the
article title, a task that took a quarter of the validation
time for this step. In nine of the corpus blocks (9% of the
errors) the original corpus text did not span a complete
sentence of the abstract, but rather a clause. In those cases
the curator kept the full sentence that the automatic sys-
tem extracted. The choice to change the original content
was motivated by the need for context to appear around
the protein-protein interactions in the text. Finally, only
four mapping errors were introduced by erroneous auto-
matic sentence boundary identification of the abstract
text. These were corrected by the curator as well.

3. Validation of the entity mapping step took the longest
time – a total of 16 hours and 15 minutes. We made an

Table 1: Programming and curation times for each step. 
Programming times were estimates. Curation times were 
measured.

Refactor Step Program Curation Total Project

ID mapping 18 h 10 m
Finding original 
sentences

28 h 4 h

Protein and 
interaction mapping

32 h 16 h 15 m

Final formatting 24 h 0 h

Total time for 
programming and 
curation

102 h 20 h 25 m 122 h 25 m

Refactored corpus: Word Freak formatFigure 2
Refactored corpus: Word Freak format. Example of the text block from Figure 1 in the refactored WordFreak format. 
The original sentence reads Here we show that E2F binds to two sequence elements within the P2 promoter of the human MYC gene 
which are within a region that is critical for promoter activity.

<?xml version="1.0" encoding="UTF-8"?>
<!-- DOC ID: 5 -->
<AnnotationFile version="1.0">
    <features list="location,coveredText,annotator,id"/>
    <annotators list="PDG/CPP,PDG"/>
    <Annotation type="Document" span="0..163" location="DOCUMENTLOCATION" id="5" PMID="2524830">
        <Annotation type="protein" span="18..21" coveredText="E2F" annotator="PDG" id="0"/>
        <Annotation type="action" span="22..30" coveredText="binds to" annotator="PDG/CPP" id="1">
            <Annotation type="action" span="22..27" coveredText="binds" annotator="PDG/CPP" id="2"/>
        </Annotation>
        <Annotation type="protein" span="89..92" coveredText="MYC" annotator="PDG" id="3"/>
    </Annotation>
</AnnotationFile>
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initial pass at automatic entity location, and spent 9 hours
curating the resulting output. This validation pass uncov-
ered a number of systematic errors in our automatic entity
tagging. We fixed those errors, reran the entity locator, and
then did a second pass. With the improvement in entity
location, this second pass took 7 hours and 15 minutes to
examine the data and make corrections. Note that some of
this time was spent tracking data on the accuracy of the
automated step, so the actual validation time is overesti-
mated. The data presented below and in Tables 3 and 4
describe the second entity mapping effort. Of the 283
blocks in the original corpus, 43% (120/283) required
manual correction of some kind.

We measured time for three separate tasks in the entity-
mapping validation process: manually examining the
entire output for correctness, manually fixing cases where
the automatic locator found an entity in the text but the
boundaries were wrong, and manually fixing cases where
the original metadata indicated that an entity existed, but

the automatic locator was unable to find it. (This last case
had two causes, which we describe below.) The total cura-
tion time on the second round was 7 hours and 15 min-
utes: 5 h 15 m for the manual examination, 55 m for the
manual repair of boundaries, and 1 h 5 m for the manual
repair of unmapped entities.

Table 4 gives the data for the validation portion of this
step. Row (a) shows the time needed to examine the entire
automatic output. Row (b) identifies the number of times
that the automatic method located an entity within the
text, but did not capture its boundaries correctly due to
the normalization of entity names in the original corpus.
In most cases, this was due to the fact that in the original
metadata, entity names like DP-1 and E2F-2 were normal-
ized to DP and E2F. In those cases, the automated process
located the entities but omitted the hyphenated numerals
from the span calculation. The curator adjusted the
boundaries manually to include the numerals. We con-
tend that this adjustment corrects an error in the original
corpus, but does not change the semantics of the corpus
itself. This repair process took 1 h 5 m.

Rows (c) and (d) give the number of times that the origi-
nal metadata suggested that there was an entity in the text,

Table 3: Results on the automatic entity mapping step

Type of error Percentage Count

Text blocks requiring no manual 
correction

57.6% 163/283

Text blocks requiring at least one 
boundary correction

22.3% 63/283

Text blocks with at least one 
unmappable entity

20.1% 57/283

Total 100% 283/283

Refactored corpus: embedded XML formatFigure 3
Refactored corpus: embedded XML format. Example of the text block from Figure 1 in the refactored embedded XML 
format.

<article>
<articleinfo>
<bibliomisc>PDGID:5<\bibliomisc>
<bibliomisc>PMID:2524830<\bibliomisc>
</articleinfo>
Here we show that <cons lex="E2F" sem="protein">E2F</cons> <cons lex="binds_to" sem="action">
<cons lex="binds" sem="action">binds</cons> to</cons> two sequence elements within the P2 
promoter of the human <cons lex="MYC" sem="protein">MYC</cons> gene which are within a region 
that is critical for promoter activity.
</article>

Table 2: Performance of the automatic sentence extraction 
step.

Overall performance Percent Count

Correct extraction 66% 187/283
Incorrect extraction 33% 96/283
Total 100% 283/283

Type of error Percent Count

Too little extracted 48% 46/96
Title text not extracted 39% 37/96
Too much extracted, 
expanded text selection

9% 9/96

Too much extracted 4% 4/96
Total 100% 96/96
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but the automated step was not able to locate it. There
were two causes for this. In 42 cases, it was due to normal-
ization of unhyphenated numbers in the metadata, or sim-
ilar phenomena. For example, the original metadata
usually identified cyclin D1 as cyclin D, and in those cases,
the automated step did not find the protein in text. When
the automated step missed the annotion, the curator
added the entity and its offsets manually. In 23 other
cases, the putative entity was not present in the text. For
example, in a number of cases, the original corpus meta-
data suggested that cyclin destruction was a token of cyclin
D. This type of refactoring error reveals errors extant in the
original corpus. In such cases, we deleted the erroneous
entity from the metadata. Fixing the errors shown in rows
(c) and (d) took 55 minutes.

There are 423 interaction types listed in the metadata of
the original corpus file. There were 450 interaction tokens
found by the entity matcher (some interaction keywords
and proteins are mentioned more than once in the evi-
dence text). There were no errors in matching the interac-
tion keywords. There are 696 protein types listed in the
metadata of the original corpus file. A total of 935 protein
tokens were found in the text by the entity matcher. Of the
696 protein types, 65 were not found by the matcher.

We also noted a number of instances where the interac-
tion type seemed incorrect, or the proteins labelled as tak-
ing part in the interaction seemed wrong. In the spirit of
keeping the semantics of the corpus constant, we did not
modify these. However, we kept notes of these discrepan-
cies and made them available with the corpus download
files.

Conclusion
It is widely accepted in the corpus linguistics community
that format is a determinant of corpus usability

Table 5: Roadmap for refactoring corpora. The list of corpora 
came from [32] and [33], where there are links to the corpora. 
Column headings indicate the steps that corpora may need to 
undergo to be refactored; those corpora that would require that 
step are noted with a dot. The heading "get original" means the 
original text needs to be retrieved. "Detect spans" means the 
corpus is a metadata corpus so spans of entities need to be 
detected. "Alt. search" means techniques other than exact-
match searching must be used.

get 
original

detect 
spans

alt. 
search

Arabidopsis Thaliana Circadian 
Rhythms [34]

•

Bio1 [35] •
BioCreative 2004 Task 1A [28] • •
BioCreative 2004 Task 1B [36] • •
BioCreative 2004 Task 2 [37] • •
BioCreative 2006 Task GM [38]
BioCreative 2006 Task GN [39]
BioCreative 2006 Task IPS/IMS 
[40]

• •

BioCreative 2006 Task ISS [40] •
BioInfer [41]
BioText: Recognizing Abbreviation 
Defintions [42]
BioText: Protein-Protein 
Interaction Data [43]

• •

BioText: Relations between 
Disease/Treatment Entities [44]

•

Brown-Genia Treebank [45] •
DepGenia [46] •
DIPPPI [47] • •
EDGAR [48] • •
GENIA [49, 50] •
FetchProt [51]
Human Gene ID-Serve •
IEPA [52] • •
ImmunoTome •
iProLink [53]
Medstract [54, 55]
MedTag [7]
OHSUMED [56, 57] • • •
PASBio [58] •
PASTA [59]
PathBinder [60]
PennBioIE [12]
PICorpus
ProSpecTome [61] • •
PDG [9] • • •
Texas [62] • •
TREC Genomics 2004 
Categorization Task [63]

• •

TREC Genomics 2005 
Categorization Task [64]

• •

TREC Gemonics 2006 IR Task [65] • •
TREC Genomics 2007 IR Task [65] • •
Wisconsin [66] • • •
WSD [67]
Yapex [68, 69] •

Table 4: Results on named entity mapping: time and required 
corrections

Curation Step Number Time

a) Manually examine output for 
validity

n/a 5 h 15 m

b) Fix protein mentions requiring 
boundary correction

131 1 h 5 m

c) Add protein annotations that 
were unmappable

42 55 m

d) Remove proteins that were in 
error in metadata

23

Total repair time (b + c + d) 2 h

Total curation time (a + b + c 
+ d)

7 h 15 m
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[5,6,10,22]. As a feasibility study, the work presented here
aimed to do two things: 1) answer whether corpus format
refactoring is a feasible, tractable problem, and 2) provide
insight into the challenges to be faced when refactoring
other, bigger corpora.

Regarding feasibility, we found that this corpus could be
refactored in about 3 person-weeks' worth of time. While
80% of that time (102 h) was spent programming, many
program components of the refactor process can be reused
in the next refactoring effort. These components include
PubMed ID and MEDLINE abstract retrieval, sentence
boundary identification, the protein entity locator, and
final format outputting. Components that may need to be
written anew for each corpus include a parser for the orig-
inal corpus file format, entity locators depending on pro-
vided metadata (e.g. diseases, drugs, cell types), and the
component that loads the annotations into the data struc-
ture before final output.

The resulting data from this refactoring project can be
used as a gold standard for protein-protein interaction
information extraction. This refactored corpus, called the
Protein Interaction Corpus (PICorpus), is freely available
for download at the BioNLP SourceForge website [14]. A
number of enhancements to the corpus are now possible
that in its previous format would have been difficult at
best. These include, but are not limited to:

• Adding linguistic annotation, e.g. of sentence bounda-
ries and part of speech, which have been contributors to
the community acceptance of other corpora such as
GENETAG and GENIA.

• Adding annotation of the genes in the text that are not
involved in the protein-protein interactions, thus making
this corpus useful for a new task: entity identification.

• Adding negative examples, making this corpus not just
more useful for system evaluation, but amenable to train-
ing statistical and machine-learning-based systems.

Using the version control software available on Source-
Forge, the distribution of iterative feature additions
becomes simple.

The process of refactoring the PDG brought to light several
challenges that are endemic to refactoring projects. The
first set of challenges involves how corpus characteristics
ease or burden the refactoring process. Specificially,

• Is the original text distributed with the corpus, or does it
need to be retrieved?

• Are the spans of entities/relations already available, or
do they need to be discovered in text?

• To discover spans, can exact strings be searched for, or
do alternate searching techniques have to be used or
developed?

Table 5 lists how various biomedical corpora fall into
these three categories. The time required to carry out refac-
toring on a particular corpus is directly related to the
answers to these questions. Those corpora that distribute
the original text (with no alterations) and the span values
for entities and relations will be straightforward to refac-
tor with deterministic programming procedures. Likely
little or no curation will be necessary to ensure the refac-
tored version contains the same content.

However, corpora for which the original text has been
altered or is not distributed, and for which no annotation
span information is available, will require multiple pro-
grammatic steps accompanied by validation procedures.
Consider, for instance, the validation results in the PDG
refactoring process, which required work in all three cate-
gories. Take the PDG corpus for example: 33% of the cor-
pus required correction from the sentence matching step,
and 43% required correction from the entity matching
step. We mentioned earlier that in the original PDG cor-
pus protein entities had been altered in the metadata, an
artifact that resulted in significant curation time. In a cor-
pus in which the entities have not been altered, exact
string matching techniques may be used. On the other
end of the spectrum, in a corpus that provides database
IDs of entities, but not text, entity locators may need to
rely on natural language processing information extrac-
tion techniques. Depending on the degree to which the
text was altered in the metadata or annotations, some cor-
pora will require more time than others. Also, program-
matic methods that deliver better results will reduce the
curation time, and could almost eliminate it.

The original PDG corpus is a metadata corpus. The 20%
curation time (20.4 h) for this project came from curating
each output block of the corpus. We did a complete cura-
tion effort on this project to understand the possible
issues. However, a spot-check on some fraction of a refac-
tored corpus is likely to be sufficient. A spot-check will
reveal specific refactoring errors, which can then be
searched and replaced throughout the entire corpus. At
best, the curation time will be constant, regardless of cor-
pus size. At worst, the time needed for curating a refac-
tored corpus will be linear with corpus size. Spot-check
curation may result in refactoring inaccuracies in the final
output, but with version control software in place, inaccu-
racies that are found later can easily be fixed and inte-
grated into the publicly available resource.
Page 8 of 11
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As mentioned in the Background section, the definition of
refactoring is to change the corpus format while preserv-
ing the original content. The second set of challenges
involves the necessary content changes that we made to
the PICorpus despite our goal of not changing any con-
tent. We found that in some cases, i.e. when an entity in
the metadata could not be found in the text by computer
or human, changing the content was inevitable. For the
metadata corpora that present this type of challenge, the
goal in refactoring is to minimize alterations from the orig-
inal by changing as few annotations as possible.

The third set of challenges involves representational
issues. That is, how exactly do we represent the entities
and relationships provided in original corpora, especially
metadata corpora? Specifically, we are referring to two
issues:

• What spans of text should be selected to represent an
entity?

• What spans of text should represent the relationship
between entities?

The results of step 4 of the curation show that there were
some discrepancies between the original and the refac-
tored entity annotations. This is not a novel problem [23-
25], and it has been addressed by researchers in a variety
of ways. Some researchers have dealt with this problem by
developing annotation guidelines that deal explicitly with
entity spans [26,27]. Others have accounted for the varia-
bility by developing metrics that measure span boundary
matches [25], or by recognizing possible variants as cor-
rect, a tack taken by the BioCreative shared task evaluators
[28].

The second representational issue involves how to encode
the relationships between entities. For instance, in the
refactored PICorpus described here, the relationship
between the two interacting proteins is represented by
annotating the span of the interation keyword in text with
the annotation "action." An alternative would have been
to select the span of text from the first keyword or protein
involved in the interaction through the last. Yet another
alternative would be to provide dependency-style infor-
mation within the annotation that links proteins through
the interaction keywords to their interacting counterparts,
a style used by PropBank and NomBank [29,30].

A final refactoring challenge was illuminated by curator
feedback: the curators found the presentation of the data
difficult to read during the validation process. Curators
were given plain text files that displayed the original cor-
pus text and the span values for the particular entities
identified in text that they were to be checking, i.e. PMID,

sentences, or proteins/interaction types. Besides direct
curator feedback, this difficulty is also evidenced in Table
4 by the disparity between the time reported to examine
the corpus for error (5 h 15 m) and time to make repairs
on the data (2 h). In future refactoring efforts, we will con-
sider loading data at each step into an annotation tool,
such as Knowtator [31], to ease the burden on the cura-
tors.

How a corpus gets annotated is often driven by what spe-
cific task the annotators expect to use the corpus for, and
different tasks will dictate a corpus be annotated differ-
ently. However, with automatic refactoring methods in
place, changing from one style of annotation to another
need not be an intractable process.
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